2nd Year Science, Christmas 2018 Time allowed: 1 ½ hours

Mr. A. Goodison

Student Name _____

Answer all questions in the spaces provided.

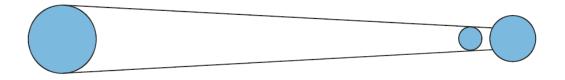
Good luck!

Question	Marks	Awarded
1	18	
2	53	
3	51	
4	24	
5	30	
6	42	
Total	218	
Grade desc	riptor	

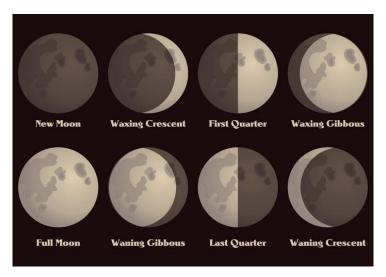
A photo of the planet Saturn, taken by the Cassini space probe. The tiny bright dot at the arrow is Earth.

Question 1 (18)

The cartoon below shows some students working in a school lab. List the safety hazards and for each hazard, give a possible solution or rule which should be followed to make the situation safe.



From the picture **list three** Hazards in the lab and state one way of reducing the risk of harm for each hazard (18)


Solution or rule
-

Question 2 (53)

The diagram below shows a simple model of a solar eclipse (an eclipse of the Sun). In the diagram, write the letter **E** for Earth, **M** for The Moon and **S** for The Sun (9)

Two weeks before or after a solar eclipse sometimes there is a lunar eclipse. Draw a labelled diagram to show a model of a lunar eclipse. (6)

The following image (Image 1) gives the different phases of the moon

Image 1: Moon Phases

The next image (Image 2) below shows **the path of the Moons orbit around the Earth** and the position of the sun (not to scale). Using both Image 1 and 2, **Draw a dot** on the Moons orbit to represent the Moon for each **phase of the Moon**. The waxing crescent moon has been done as an **example**. (14)

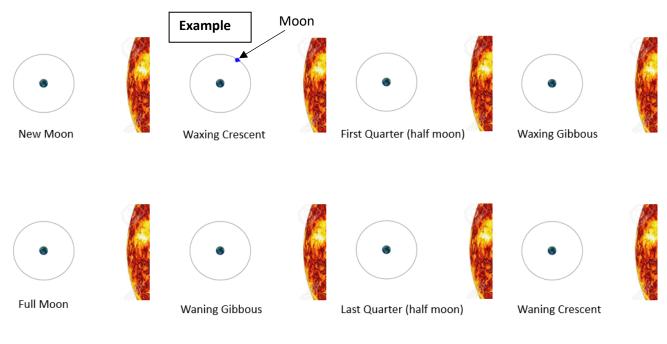


Image 2. Moon orbit positon

Why can we see the Moon even though it does not produce any light?

Below is an image (Image 3) of the Earth and Sun (not to scale). The Earth is in two different positions (**A** and **B**) at different times of the year.

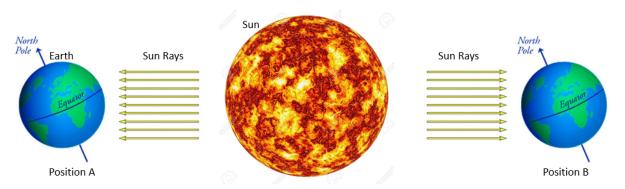


Image 3: Sun rays striking Earth at different times of the year

Ireland is in the Northern Hemisphere and Australia is in the Southern Hemisphere. What season (either **Summer** or **Winter**) are these countries in for the below questions.

Ireland season in position A_____(3)

Australia **season** in position A_____ (3)

Evn	lain	vour	answer
Exp	Idill	your	answer

	(3)
Ireland season in position B(3)	
Australia season in position B(3)	
How many months would it take Earth to travel from position	on A to position B?(3)
How long does it take for the Earth to rotate on its axis once	e?(3)

Question 3 (51)

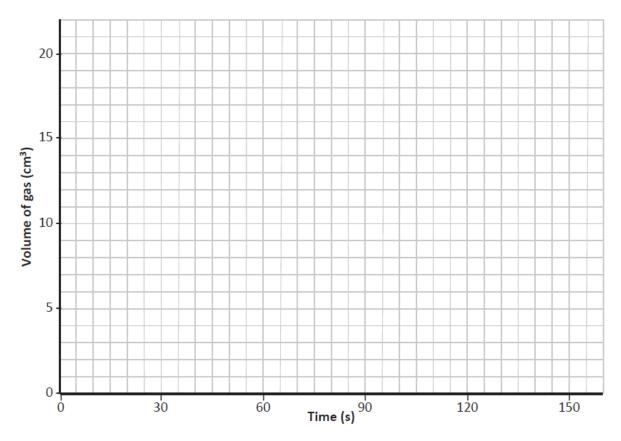
Some chemical reactions proceed quickly while some proceed at a slower rate. The passage below explains the factors that speed up the rate of a reaction.

The terms below are missing from the passage.

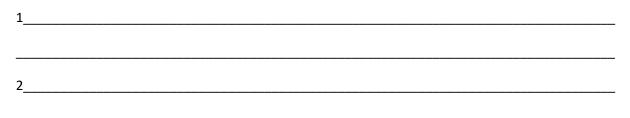
Callisiana		Townsonsteins	Concentration	Catalust
Collisions	Activation energy	Temperature	Concentration	Catalyst

In the spaces provided, write the missing terms. (15)

is a measure of t	he amount of particles in a solution.
Surface area is a measure of how much solid is ex many take place	posed to reaction, and therefore how
affects the energ collide. It also affects how effective collisions are.	y that particles have and how quickly they
The energy required for any reaction to take plac presence of a spectrum the activation energy.	

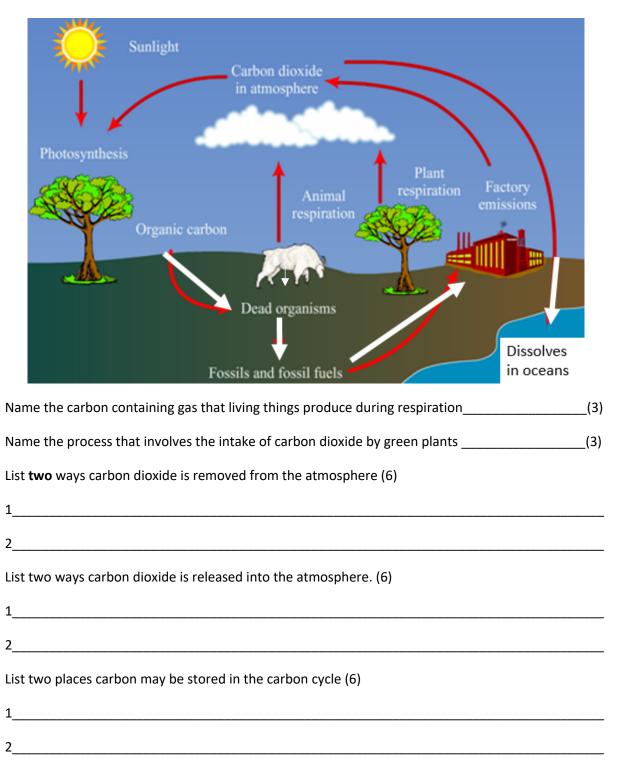

A student carried out an experiment to investigate the effect of temperature on the rate of production of a certain gas. The first reaction happened at 20 °C and the second one at 30 °C.

In both cases the gas produced was passed through water as it was collected. This was to ensure that the gas was always at room temperature (a constant) when its volume was measured.


Time (s)	Volume of gas (cm ³) for reaction at 20 °C	Volume of gas (cm ³) for reaction at 30 °C
0	0	0
30	7	10
60	13	16
90	17	19
120	19	20
150	20	20

The student recorded the following results:

Using the graph paper below, draw graphs for both sets of results (24)



State **two** conclusions the student could have drawn from the results (12)

Question 4 (24)

The diagram below shows the carbon cycle.

Question 5 (30)

The diagram below shows the periodic table

hydrogen 1 H 1.0079																		^{helium} 2 He 4.0005
ithium 3	barylium												5 topo	earbon 6	nitrogen 7	cong an 8	fluorine 9	10
Ť	Be												B	C	Ň	Ó	Ē	Ne
6.941	9,0122												10.811	12,911	14.007	15,999	18,998	20,190
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chiorine	argon
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Р	S	CI	Ar
22.990	24.305												26.982	28.095	30.974	32.065	35,453	39.948
potassium 19	calcium 20		scandium 21	dianium 22	vanadium 23	chronium 24	manganese 25	26	27	nickel 28	copper 29	zinc 30	gallim 31	germanium 32	arsenic 33	selenium 34	bromine 35	stypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.966 vthum	47.867	50.942 niobium	51.996 molybdenum	54.938 bechnefum	55.845 ruftenium	58.933 rhocium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61	74.922 antimory	78.96 tellurium	79,964	83.90
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- T - J	Xe
85.468	87.62		88.906 lutellum	91.224 hafnium	92.906 tantalum	95.94	[96]	101.07	102.91 Hidlum	106.42 platinum	107.87 gold	112.41	114.82 Ihallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astaine	131.29
caesium 55	56	57-70	71	72	73	tungsten 74	rhenkm 75	76	77	78	79	80	81	82	83	84	85	radon 86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174,97 krwrencium	178,49 ruther/ordium	180.95 dubnium	183,84 seaborgium	186.21 bohrium	190.23 hassium	192.22 metnerium	195.68 unumillum	196.97 unununium	200,59 ununblum	204.38	207.2 ununguadium	208.98	209	210	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr 12621	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				

Use the diagram to identify and example (by symbol or name) to match each description in the table below. (12)

Description	Example
An element that has a full outer shell	
An element that has 1 electron in its outer shell	
An element that has 3 electrons in its outer shell	
An element that has 7 electrons in its outer shell	

Use the periodic table to predict the ratio of atoms and the chemical formula for each of the compounds listed. (18)

Compound	First element	Second element	Ratio	Formula
Water	Hydrogen (H)	Oxygen	2:1	H ₂ O
Hydrochloric acid	Hydrogen (H)	Chlorine (Cl)		
Magnesium	Magnesium Magnesium (Mg)			
chloride				
Ammonia	Nitrogen (N)	Hydrogen (H)		

Teacher: Mr. A. Goodison

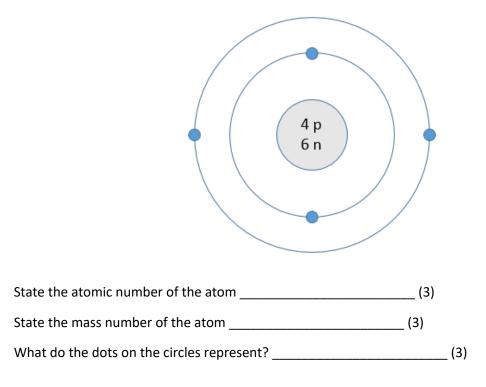
Question 6 (42)

Match each of the following sub-atomic particles to their descriptions in the table below (9)

	Electron	Neutron	Proton
Description		Particle	
Positively charged			
Negatively charged			
No charge			

Which two sub-atomic particles make up the nucleus of an atom? (6)

- 1. _____
- 2. _____


Which two sub-atomic particles have the same mass? (6)

- 1. _____ 2. _____
- Z. _____

Which sub-atomic particle has the lowest mass? (3)

Answer_____

The image below shows the Bohr model of an atom.

Using the periodic table, identify the element that is made up of this type of atom. Justify your answer (6)

Explain why it is difficult for scientists to study atoms. (3)

If you are finished early and have checked all of your answers, colour in the picture below.

