Time 2 hours

Mr. A. Goodison $\mathbf{2 ~}^{\text {nd }}$ year Science Test GCS

Name
Answer all questions in the spaces provided.

Good luck!

An image taken by the international space station of a solar eclipse. The moon has passed in front of the sun and the shadow of the moon may be seen on the earth.

Question	Marks	Awarded
1	44	
2	15	
3	21	
4	15	
5	24	
6	36	
7	15	
8	33	
9	24	
Total	227	
Grade descriptor		

Question 1 (27 marks)

The following image (Image 1) gives the different phases of the moon

Image 1: Moon Phases
The next image (Image 2) below shows the path of the Moons orbit around the Earth and the position of the sun (not to scale). Using both Image 1 and 2, Draw a dot on the Moons orbit to represent the Moon for each phase of the Moon. The waxing crescent moon has been done as an example. (14)

Image 2. Moon orbit positon
Why can we see the Moon even though it does not produce any light?
\qquad
\qquad
\qquad

Below is an image (Image 3) of the Earth and Sun (not to scale). The Earth is in two different positions (\mathbf{A} and \mathbf{B}) at different times of the year.

Image 3: Sun rays striking Earth at different times of the year

Ireland is in the Northern Hemisphere and Australia is in the Southern Hemisphere. What season (either Summer or Winter) are these countries in for the below questions.

Ireland season in position A (3)

Australia season in position A \qquad (3)

Explain your answer
\qquad
\qquad

Ireland season in position B \qquad (3)

Australia season in position B \qquad (3)

Explain your answer
\qquad

How many months would it take Earth to travel from position A to position B ?
(3)

Describe the arrangement of the Sun, Moon and Earth to allow a solar eclipse to be seen from Earth
\qquad
\qquad

Describe the arrangement of the Sun, Moon and Earth to allow a lunar eclipse to be seen from Earth
\qquad
\qquad

Question 2 (15 marks)

Changing levels of carbon dioxide in the atmosphere

Graph 1. Average carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in the Atmosphere at Mouna Loa, Hawaii

From Graph 1, is the amount of carbon dioxide in the atmosphere increasing or decreasing?
Answer \qquad (3)

What human factors could be causing a change in the amount of carbon dioxide in the atmosphere?
Answer
Fill in the blanks for the word equation of photosynthesis using the key words. Water, Light-energy, Carbon dioxide, Oxygen.
\qquad $+$ \qquad $+$ \qquad \rightarrow Glucose (food) + \qquad
Give an example of a process that removes carbon from the atmosphere \qquad

Question 3 (21 marks)

Below is a bar chart showing the melting points of different substances found in the kitchen.

Graph 2: melting points for various substances

Explain what is meant by "melting point":
\qquad
\qquad

Human body temperature is $37^{\circ} \mathrm{C}$. Use the data from Graph 2 to say whether butter and/or beeswax would melt in your hand. Explain your answers:
(a) Butter (write "melt" or "would not melt"):

Explain:
\qquad
(b) Beeswax (write "melt" or "would not melt"):

Explain:
\qquad
\qquad

A chocolate biscuit cake is made by melting butter and sugar together, and then adding other ingredients.

Using Graph 2 on melting points, what is the minimum temperature which the butter and sugar mixture would have to reach to melt both substances?

Answer: \qquad (3)

Question 4 (15 marks)

You want to do an experiment to see make a berocca (effervescent tablet) dissolve as quickly as possible.

Name two factors you could change to increase the rate of the chemical reaction so that it would dissolve faster.
$1^{\text {st }}$ thing you could change \qquad
Explain in terms of the particles how this would increase the reaction rate:

\qquad
\qquad
$2^{\text {nd }}$ thing you could change \qquad (3)

Explain in terms of the particles how this would increase the reaction rate:
\qquad
What gas was produced in this chemical reaction? \qquad (3)

Question 5 (24 marks)

What pH is a neutral solution? Less than 7 , greater than 7 or exactly 7. Answer \qquad
What pH is an acidic solution? Less than 7, greater than 7 or exactly 7. Answer \qquad (3)

What pH is a basic solution? Less than 7 , greater than 7 or exactly 7. Answer \qquad (3)
pH is very important for the food industry, particularly for milk production. Milk is often heated to kill bacteria. The milk must be a certain pH to ensure that the milk does not coagulate when heated.

Study the graph below and answer the following questions.

From Graph 3, what pH should the milk be heated at to get the best stability (will not coagulate easily) Answer \qquad (3)

From the Graph 3, what pH value gave the worst stability? Answer (3)

Grainne is working at Dairy Gold and checks the pH of the milk before the milk is heated to kill the bacteria. Grainne notices that the $\mathbf{p H}$ is 6.7. Grainne stops the milk and says the pH must be changed before being heated. (See Graph 3).

Do you agree with Grainne? Answer (yes or no) \qquad
Explanation (3)
\qquad
\qquad

Should Grainne add an acid or a base to the milk? Answer (Acid or Base): \qquad
Explanation: (3)
\qquad
\qquad
\qquad

The next day Brian is working and notices that the pH is at 6.8. Brian wants to heat the milk for 60 seconds to kill the bacteria. Brian lets the milk get heated without changing the pH . Do you agree with Brian's decision? (See Graph 3). Answer (yes or no) \qquad

Explanation: (3)
\qquad
\qquad
\qquad

Question 6 (36 marks)

Two students carried out an experiment in which they measured the maximum mass of salt that can be dissolved in water at different temperatures (Table 1)

Suggest a hypothesis that the students might have formed before the experiment.
\qquad
\qquad

What instrument would the students have used to measure:

1. The temperature of the water: \qquad (3)
2. The mass of salt: \qquad (3)

Table 1: The maximum mass of salt that could be dissolved in water at various temperatures

Temperature of water $\left({ }^{\circ} \mathrm{C}\right)$	Mass of salt dissolved (g)
20	35
40	65
60	120
80	170
100	250

State one variable that you think the student should have kept constant during the experiment.
\qquad
\qquad

Explain why you think it would have been important for that variable to be kept constant.
\qquad
\qquad

Draw a graph of temperature of water against mass of salt dissolved from the data in Table 1, putting temperature on the x-axis (horizontal) from the data in the table.
(12)

What conclusion can you draw from your graph that you made from the Table $\mathbf{1}$ data?
\qquad

Question 7 (15 marks)

The symbol shown on the right is that of a light bulb. In each of the spaces provided, draw two bulbs so that they are arranged in (i) series and (ii) in parallel
(6)

(i) Two bulbs in series

(ii) Two bulbs in parallel

You are really excited for Christmas and decide to put up a Christmas tree in summer. You take out your Christmas tree lights and find that two of the bulbs are not working but the rest are lighting.

Are these bulbs arranged in series or in parallel? \qquad
Explanation: (6)
\qquad
\qquad
\qquad

Question 8 (33 marks)

The diagram shows part of the human breathing system.
(i) Name the parts labelled \mathbf{A} and \mathbf{B} in the diagram.

A \qquad (3)

B \qquad (3)
(ii) Part \mathbf{A} has rings of cartilage. What do the rings of cartilage do?
\qquad (3)

During gas exchange in the lungs, gas \mathbf{X} leaves the blood vessel and enters the alveolus. At the same time, gas \mathbf{Y} leaves the alveolus and enters the blood vessel.

(i) Name gas \mathbf{X} \qquad (3)
(ii) Name gas \mathbf{Y} \qquad (3)

Name a lifestyle factor (something you choose to do) which can affect your breathing system in a positive and negative way.

Positive factor: \qquad (3)

Negative factor \qquad (3)

Study the Graph 4 below on cancer rates and answer the following questions

Graph 4. Cancer rates between 1930 and 2000

What trend in lung cancer do you notice between the years 1930 to 1990? \qquad
What trend in lung cancer do you notice after the year 1990? \qquad (3)

Suggest a reason for the trends in lung cancer from the graph
\qquad
\qquad
\qquad
\qquad
\qquad

Question 9 (27 marks)

Sophie is a Runner and wants to buy the shoe which will give her the most grip.
She sets up an experiment where she is using a newton balance to test the amount of force it takes for the shoe to begin moving.

She gets the following results

Shoe	Nike	Adidas	Asics
Force (N)	3.02	3.42	3.68

Which shoe should she buy so that she has the most grip?
In this experiment what was the:
Cause variable (the thing she changed). Ans
Effect variable (the thing she measured). Ans \qquad
Control variable (the things she kept the same). Ans
What is the force which causes grip?
What is the unit of force?

You wish to investigate the relationship between the weight (force) placed on a spring and the extension on that spring you gather the appropriate data and plot the following graph.

Graph 5, Weight on a spring and spring extension.
What conclusion can you make from looking at Graph 5?
\qquad
\qquad

You then place a stone onto the spring and note a spring extension of 9 cm . Use your graph to find the weight of the stone. Answer \qquad (3)

Well done, and thank you for being a great student for the whole year and making it a pleasure to be your teacher!

If you have time, try to estimate your grade from this test.

If you are completely finished colour in the below picture

